Listing with Totals

Notes:

  1. • and ◊ represent wild cards, typically numbers between 1 and 7.
  2. for visualizing relationships, see graphic representations.

 

  Taxonomic Form Formula No. Notes
Root   R 1  
Root Hierarchy RH 1  
  Levels RHL1 – RHL7 7  
  Oscillating Duality RH-oD 2 Poles
  Dynamic Duality RH-kD 2 Poles
  Tree RHK 1  
  Tree Centres RHKO1 - O10 10  
  Tree Channels RHKc1 – c22 22  
  Internal Duality RHK-iD 1  
Root Structural Hierarchy sRH 1  
  Groupings (Levels) sRHG1 – G7 7  
  Internal Groups e.g. sRHG25 28 7+6+5+4+3+2+1
  Oscillating Duality sRH-oD 2 Poles
  Unfolding Duality sRH-uD 16 2 + 7x2
  Dynamic Duality sRH-kD 2 Poles
  Tree sRHK 1  
  Tree Centres sRHKO1 - O10 10  
  Tree Channels sRHKc1 – c22 22  
  Internal Duality sRHK-iD 2 Context-content
Root Q-Expansion      
  Style Hierarchy RMH 1 Q-hierarchies are identified via the corresponding Primary Spiral
  Style Hierarchy Levels RMHLα - Lδ 4
Root Typology RH' 1  
  Types RH'L1 - L7 7  
  Oscillating Duality RH'-oD 2 Poles
  Unfolding Duality RH'-uD (?) 16 2 + 7x2
  Executing Duality RH'-eD 2 Poles
  Approach Duality RH'-aD 2 Poles
  Tree RH'K 1  
  Tree Centres RH'KO1 - O10 10  
  Tree Channels RH'Kc1 – c22 22  
  Internal Duality RH'K-iD 2 Context-content
Root Spiral RH'C 1  
  Stages RH'Cφ1 - φ7 7  
  Origin RH'Cφ1o/i/m 3  
  Dynamic Duality RH'C-kD 2 Poles
  Tree RH'CK 1  
  Tree Centres RH'CKO1 - O10 10  
  Tree Channels RH'CKc1 – c22 22  
  Internal Duality RH'CK-iD 2 Context-content
Root Spiral Structural Hierarchy RH'CsH 1  
  Groupings (Levels) RH'CsHG1 – G7 7  
  Internal Groups e.g. RH'CsHG25 28 7+6+5+4+3+2+1
  Oscillating Duality RH'CsH-oD 2 Poles
  Unfolding Duality RH'CsH-uD 16 2 + 7x2
  Dynamic Duality RH'CsH-kD 2 Poles
  Tree RH'CsHK 1  
  Tree Centres RH'CsHKO1 - O10 10  
  Tree Channels RH'CsHKc1 – c22 22  
  Internal Duality RH'CsHK-iD 2 Context-content
Root Tertiary Hierarchy      
  Levels RH"L1 – RH"L7 7  
  Oscillating Duality RH"-oD 2 Poles
  Dynamic Duality RH"-kD 2 Poles
  Tree RH"K 1  
  Tree Centres RH"KO1 - O10 10  
  Tree Channels RH"Kc1 – c22 22  
Root Tertiary Structural Hierarchy sRH" 1  
  Groupings (Levels) sRH"G1 – G7 7  
  Internal Groups e.g. sRH"G25 28 7+6+5+4+3+2+1
  Oscillating Duality sRH"-oD 2 Poles
  Unfolding Duality sRH"-uD 16 2 + 7x2
  Dynamic Duality sRH"-kD 2 Poles
  Tree sRH"K 1  
  Tree Centres sRH"KO1 - O10 10  
  Tree Channels sRH"Kc1 – c22 22  
  Internal Duality sRH"K-iD 2 Context-content
Primary Hierarchies PH1 - PH7 7 1 x 7
  Levels PH•L1 - PH•L1 49 7 x 7
  Oscillating Duality PH•-oD 14 2 Poles x 7
  Dynamic Duality PH•-kD 14 2 Poles x 7
  Tree PH•K 7 1 x 7
  Tree Centres PH•KO1 - O10 70 10 x 7
  Tree Channels PH•Kc1 – c22 154 22 x 7
  Internal Duality PH•K-iD 1 1 x 7
Primary Structural Hierarchy sPH• 7 1 x 7
  Groupings (Levels) sPH•G1 – G7 49 7x7
  Internal Groups e.g. sPHG25 196 (7+6+5+4+3+2+1) x 7
  Oscillating Duality sPH•-oD 14 2 Poles x 7
  Unfolding Duality sPH•-uD 112 (2 + 7x2) x 7
  Dynamic Duality sPH•-kD 14 2 Poles x 7
  Tree sPH•K 7 1 x 7
  Tree Centres sPH•KO1 - O10 70 10 x 7
  Tree Channels sPH•Kc1 – c22 154 22 x 7
  Internal Duality sPH•K-iD 14 Context-content x 7
Principal Typology PH'• 7 1 x 7
  Types PH'▪L1 - L7 49 7 x 7
  Oscillating Duality PH'▪-oD 2 2 Poles x 7
  Unfolding Duality PH'▪-uD (?) 16 (2 + 7x2) x 7
  Executing Duality PH'▪-eD 2 2 Poles x 7
  Approach Duality PH'▪-aD 2 2 Poles x 7
  Style Hierarchy PH'▪MH 7 1 x 7
  Style Hierarchy Levels PH'▪MHLα - Lδ 28 4 levels x 7
Primary Q-Hierarchy PH'▪QH◊ 49 7 x 7
  Q-Subsidiary Typology PH'▪Qt◊ 49 7 x 7
  Oscillating Duality PH'▪QH◊-oD 14 (2 Poles x 7) x 7
  Executing Duality PH'▪QH◊-eD 2 2 Poles x 7
  Approach Duality PH'▪QH◊-aD 2 2 Poles x 7
  Dynamic Duality PH'▪QH◊-kD 2 2 Poles x 7
  QH-Tree PH'▪QH◊•K 49 7 x 7
  Tree Centres PH'▪QH◊KO1 - O10 70 10 x 7
  Tree Channels PH'▪QH◊Kc1 – c22 154 22 x 7
  Internal Duality PH'▪QH◊K-iD 7 1 x 7
  Q-Spiral PH'▪QC◊ 7 7 x 7
  Q-Spiral Stages PH'▪QC◊φ1 - φ7 343 7 x 7 x 7
  Q-Spiral Origin PH'▪QC◊φ1o/i/m 147 3 x 7 x 7
  Q-Spiral Dynamic Duality PH'▪QC◊-kD 98 2 Poles x 7 x 7
  Q-Structural H      
  Q-Groupings (Levels) PH'▪QsH◊G1 – G7 343 7 x 7 x 7
  Internal Groups e.g. PH'▪QsH◊G25 1,372 (7+6+5+4+3+2+1) x 7x7
  Oscillating Duality PH'▪QsH◊H-oD 98 (2 Poles x 7) x 7
  Unfolding Duality PH'▪QsH◊-uD 784 (2 + 7x2) x 7 x 7
  Dynamic Duality PH'▪QsH◊-kD 98 (2 Poles x 7) x 7
  QsH Tree PH'▪QsH◊K 49 1 x 7 x 7
  Tree Centres PH'▪QsH◊KO1 - O10 490 10 x 7 x 7
  Tree Channels PH'▪QsH◊Kc1 – c22 1078 (22 x 7) x 7
  Internal Duality PH'▪QsH◊K-iD 98 (Context-content x 7) x 7
  Q-Matrix PH'▪QHZ 7 1 x 7
Primary Spiral PH•C1 - C7 7  
  Stages PH•Cφ1 - φ7 7  
  Origin PH•Cφ1o/i/m 3  
  Dynamic Duality PH•C-kD 2 Poles
  Tree PH•CK 1  
  Tree Centres PH•CKO1 - O10 10  
  Tree Channels PH•CKc1 – c22 22  
Primary Spiral Structural Hierarchies sPH• 7 1 x 7
  Groupings (Levels) PH•CsHG1 – G7 49 7 x 7
  Internal Groups e.g. PH•CsHG25 28 7+6+5+4+3+2+1
  Oscillating Duality PH•CsH-oD 14 2 Poles x 7
  Unfolding Duality PH•CsH-uD 112 (2 + 7x2) x 7
  Dynamic Duality PH•CsH-kD 14 2 Poles x 7
  Tree PH•CsHK 7 1 x 7
  Tree Centres PH•CsHKO1 - O10 70 10 x 7
  Tree Channels PH•CsHKc1 – c22 154 22 x 7
  Internal Duality PH•CsHK-iD 14 Context-content x 7
Tertiary Hierarchies PH"1, 2, 3, 4, 5, 7 6  
  Levels PH"L1 – PH"L7 7  
  Oscillating Duality PH"-oD 2 Poles
PH6: Tertiary Hierarchy PH"6 1  
  Levels PH"6L1 – PH"6L7 7  
  Oscillating Duality PH"-oD 2 Poles
  Dynamic Duality PH"-kD 2 Poles
  Tree PH"K 1  
  Tree Centres PH"KO1 - O10 10  
  Tree Channels PH"Kc1 – c22 22  
  Tertiary Structural H sPH"6 1  
  Groupings (Levels) sPH"6G1 – G7 7  
  Internal Groups e.g. sPH"6G25 28 7+6+5+4+3+2+1
  Oscillating Duality sPH"6-oD 2 Poles
  Unfolding Duality sPH"6-uD 16 2 + 7x2
  Dynamic Duality sPH"6-kD 2 Poles
  Tree sPH"6K 1  
  Tree Centres sPH"6KO1 - O10 10  
  Tree Channels sPH"6Kc1 – c22 22  
  Internal Duality sPH"6K-iD 2 Context-content
Extra        
  Internal entities (levels) of the groups in structural hierarchies.   5,376 Calculation needs checking.

Last Corrected:  14-May-2013